Use of Biogas for Electric Power

Net Metering versus Standby Rates
SC-3 Illustrative Example

Doug Lutzy
Department of Public Service
January 29, 2004
Background

September 17, 2002
- Governor signs 400 kW digester net-metering bill

December 2002
- Utilities file new net-metering tariffs

April 2003
- Utility digester net-metering tariffs take effect
Net Metering Administration

ζ Utilizes Standard Bundled Rate

ψ Monthly on-site kWh production displaces utility metered kWh sales to on-site loads

ψ Customer avoids fixed delivery costs (including CTCs) and supply costs otherwise recovered in tariff energy (per kWh) charges

ψ Monthly production in excess of on-site load
 ξ converted at tariff energy rate per kWh
 ξ creating additional monthly bill credits ($)

ψ Residual generation excesses are carried forward and eventually reconciled after 12 months @ utility’s avoided cost (ISO mkt. prices)
Standby Delivery Rates

Commission Guideline and Objective

- Transfer recovery of fixed delivery costs from standard volumetric (per kWh) rate elements
- Encourages displacement of utility on-peak delivery and supply services

Standby delivery tariff rate elements:

- **Customer** per month
- **Contract demand** per kW (paid monthly)
- **As-Used demand** peak hour* kW per day

Energy service at standard tariff supply rates

* As-used demand assessed only during on-peak hours
Anaerobic Digesters
Special Considerations

Operational Flexibility

Not based on comparative economics of generating electricity versus purchasing services from grid

Resolving waste management problem drives the generator operation

Operating digester and generator during utility off-peak rating periods is more valuable to farm customers than the opportunity to purchase lower cost electricity services from the grid
Illustrative Customer

Generator Characteristics
- Generator Size: 200 kW
- Energy production: 108,000 kWh/mo*

Customer Requirements
- Peak demand: 150 kW
- Energy: 79,200 kWh/mo**

* Assumes average operation at 140 kW
** Assumes average load of 110 kW
Standard tariff delivery bill
(assuming no generator)

ζ Monthly standard tariff bill*

ψ Customer Charge $ 260
ψ Demand Charges $2,250
ψ kWh (delivery) charges $1,270
ψ kWh (supply) charges $3,960

ξ Total monthly bill ~$7,740

* SC-3 demand @ $15/kW
 kWh: delivery @ 1.6 c/kWh + supply @ 5.0 c/kWh = 6.6 c/kWh
SC-3 Standard bill (derivations)

Customer Charge: $260

Demand Charges: 150kW $15 = $2,250

Residual Delivery: $2,510

kWh delivery: 79,200kWh $0.016 = $1,270

kWh supply: 79,200kWh $0.050 = $3,960

tariff rate per kWh: 6.6 cents
Net-Metered delivery bill

Monthly net-metered bill

Net Metered Energy* (28,800) kWh

Residual Standard tariff bill

Monthly Customer & Demand Charges only $2,510
Excess energy value @ tariff c/kWh rate - $1,900**

Adjusted (net-metered) bill $ 610

* generator met all of customer’s on-site kWh loads and sent 28,800 kWh back to grid

** excess energy valued @ 28,800 kWh X $0.066 = $1,900
Standby tariff bill

Monthly SC-3 Standby tariff bill

- Customer Charge: $646
- Contract Demand: $1,500*
- As-Used Demand: $0**

Total Monthly Standby bill: $2,146

* Assumes generator completely satisfies customer’s on-site electric loads during all on-peak hours (weekdays 8am-10pm) and off-peak hours; no utility supply service actually delivered.
Monthly Bill Comparisons

Net-Metered & Standby vs. Standard

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Net - Metered</th>
<th>Standby</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$ 7,740</td>
<td>$ 610</td>
<td>$ 2,146</td>
</tr>
</tbody>
</table>

Ψ Net-Metered Savings vs. Standby Rates
ξ $1,536; 72%

Ψ Net-Metered Savings vs. Standard Rates
ξ $7130; 92%